

TeM7E Series Moulded Case Circuit Breaker

1 Overview

TeM7E series moulded case circuit breaker (hereinafter referred to as circuit breaker) is the fourth generation of circuit breaker products developed and created by the outstanding designers in our company using the simulation design platform introduced and the series of advanced technologies such as international advanced rotary double break point technology, contact repulsion and locking technology, energy rapid tripping technology, and air blowing and magnetic blowing technology.

The product features with a high degree of modularity and its accessories are box mounted. It has the characteristics of small size, high breaking capacity, high current limiting, zero flashover, full selectivity, and green environmental protection.

High performance: High-performance electronic moulded case circuit breaker TeM7E- 125/250/400/630

- Coordinated trip system, used to quickly break the extremely large short circuit current within 10ms;
- Double-coil transformer, used to ensure the current, voltage, and power accuracy within Grade 1.5;

• Convenient communication, used to realize remote signaling, remote control, remote regulation, and remote metering.

High breaking capacity: Each model of circuit breaker has multiple breaking capacities up to 150kA to meet various protection needs required by customers:

- Standard application: Standard type (L)
- Applications with high performance requirements: (High breaking type: M and H)
- Special application: Current limiting type (S)

The circuit breaker is used in the AC 50/60Hz circuit with the rated voltage up to 690V and the rated current up to 630A for making, breaking and carrying the rated current under the normal circuit conditions, and it can provide reliable protection for lines and electrical equipment in the event of overload, short circuit, and undervoltage situations, and can be used as overload, short circuit and undervoltage protection for the motor with infrequent start.

1.1 Product Features

• The international advanced rotary double break point technology, contact repulsion and locking technology, energy rapid tripping technology, and air blowing and magnetic blowing technology are used, with high breaking capacity and high current limiting coefficient;

• The full series of products has zero flashover and the accessories are box mounted;

• The circuit breaker has the functions of overload long delay, short circuit short delay, short circuit instantaneous, earthing protection, and neutral pole protection;

• With isolation function;

• With high environmental protection, the shell is made of recyclable material.

1.2 Standards:

- IEC 60947-1
- IEC 60947-2

1.3 Working Environment

• Ambient air temperature: -40°C ~+70°C; the mean temperature within 24h does not exceed +50°C;

Note: When the circuit breaker works in ambient air temperatures above +70°C or below -40°C, please contact the manufacturer for negotiation.

• Altitude: The altitude of the installation site does not exceed 2000m. If the altitude exceeds 2000m, please refer to the altitude and derating factor table;

• Atmospheric conditions: The relative humidity of the atmosphere air does not exceed 50% at the maximum ambient temperature of +55°C; higher humidity is allowed at lower temperatures; when the monthly mean minimum temperature is +25°C in the wettest month, the monthly mean maximum relative humidity of that month is 90% by considering the condensation occasionally occurred on the product surface due to temperature changes.

• The circuit breaker should be installed in a place where there is no explosion hazard and no abnormal electric dust enough without causing metal corrosion and insulation damage;

• Pollution degree: Level 3; Level 2 if the accessories are installed in the moulded case circuit breaker;

• Installation category: The installation category of main circuit of the moulded case circuit breaker is Class III, and of the auxiliary circuit and control circuit is Class II.

1.4 Installation Method

The circuit breaker can be installed vertically (that is vertical mounted) and horizontally (that is horizontal mounted), and adopts the lower wire inlet.

2 Type Designation

Те	Μ	7	Е	-			/										
T	I.	I.	I.	I.	I.	I.		T	I.	I.	T	I.	I.	I.	I.	I.	I.
1	2	3	4	5	6	7		8	9	10	(11)	(12)	13	(14)	(15)	(16)	(17)

1	Enterprise code	
2	Product code	Moluded Case Circuit Breaker
3	Design code	
4	Derived code	Electronic type

TeM7E Series Moulded Case Circuit Breaker

5	Frame grade code	Refer to the Basic Parameters Table
6	Breaking capacity level	L - Standard type; M - Middle breaking capacity; H - High breaking capacity; S - Super-high breaking capacity
7	Operation mode code	By default: Operation directly via handle; P: Operation via motor; Z: Operation via rotary handle
8	Number of poles	3 - three-pole; 4 - four-pole
9	Release model and accessory code,	refer to the internal accessory code table 2
10	Usage code	By default: Power distribution; 2: Motor protection
(11)	N pole code	The code is available for 4 poles only rather than other poles; Type B 4300B Type C 4300C
(12)	Rated current	Refer to the Basic Parameters Table 1
13	Controller type	Refer to the controller types E2 and E4; by default: E2
(14)	Accessory voltage	Refer to the accessory parameter table 15
(15)	Installation code	By default: Fixed type front-panel; B: Fixed type back-panel; F: Plug-in type front-panel; C: Plug-in type back-panel; D: Drawer type back-panel; Q: Drawer type frontpanel
16	Application code	By default: Conventional type; GY: Plateau; SR: Damp heat; HB: Environmental protection; YW: Salt spray; GW: High temperature; DW: Low temperature
17	Special requirements	According to the description by customer

3 Technical Parameters

Modelel				TeM7	E-125			TeM7	E-250		
Frame currer	nt Inm (A)			12	25		250				
Number of poles			3P, 4P					3P, 4P			
Rated operat	ing voltage	Ue (V)	AC380	/400/415, AC	500/550, AC6	60/690	AC380	AC380/400/415, AC500/550, AC660/690			
Rated insulat	tion voltage	e Ui (V)		80	00			80	00		
Rated impuls	e withstand	l voltage Uimp (kV)		8	8			8	3		
Rated freque	ncy Hz			50	/60			50/	/60		
Rated curren	t In (A)		50, 56	63, 70, 75, 8	0, 90, 100, 1	12, 125	100, 112, 1	25, 140, 150,	160, 180, 20	0, 225, 250	
Breaking cap	acity level		L	М	Н	S	L	М	Н	S	
	AC380/40	00/415V	50	85	100	150	50	85	100	150	
lcu	AC500/55	50V	50	50	70	70	50	50	70	70	
	AC660/690		20	20	40	40	20	20	40	40	
AC380/400/415V				10	0%			100	0%	1	
Ics (%Icu) AC500/550V			10	0%			100	0%			
()	AC660/69	90		10	0%			100	0%		
Isolation fund	tion			Y	es			Ye	es		
Usage categ	ory		A				A				
	Mechanic	al life	20000				20000				
Operation		AC380/400/415V		180	000		10000				
(times)	Electrical	AC500/550V			1		/				
		AC660/690V		80	00		4000				
Flashover dis	stance (mm	1)		(0			()		
				Acces	sory informat	ion					
Operation dir	ectly via ha	andle		∎ Sta	ndard			Sta	ndard		
Extended rotary handle				□ Op	tional		Optional				
Motor mechanism				□ Ор	tional		□ Optional				
Fixed type front-panel		■ Standard				■ Standard					
Plug-in type front-panel				□ Ор	tional			□ Op	tional		
Plug-in type	back-panel			□ Ор	tional		Optional				
Drawer type				1 -	No			- 1	No		
Phase partiti	on			∎ Sta	ndard			∎ Sta	ndard		

TeM7E Series Moulded Case Circuit Breaker

Table 1, continued

Model				TeM7	E-400		TeM7E-630					
Frame curre	nt Inm (A)			40	00		630					
Number of poles				3P,	4P		3P, 4P					
Rated opera	ting voltag	e Ue (V)	AC380	/400/415, AC	500/550, AC6	60/690	AC380	/400/415, AC	500/550, AC6	\$60/690		
Rated insula	tion voltag	e Ui (V)		10	00			10	00			
Rated impu (kV)	lse withst	and voltage Uimp		1	2			1	2			
Short time w	ithstand cu	urrent ICW (kA/s)		6kA	\ 1s			8kA	1s			
Rated freque	ency Hz			50	/60			50/	/60			
Rated currer	nt In (A)		160, 180, 2	200, 225, 250,	280, 315, 35	0, 375, 400	250, 280, 3	315, 350, 375,	400, 450, 50	0, 560, 630		
Breaking cap	oacity leve	l	L	М	Н	S	L	М	Н	S		
	AC380/4	00/415V	50	85	100	150	50	85	100	150		
lcu	AC500/550V		50	50	70	70	50	50	70	70		
	AC660/690			20	40	40	20	20	40	40		
lce	AC380/4	00/415V		10	0%			100	0%			
(%lcu) AC500/550V				10	0%			100	0%			
(kA)	AC660/6	90		10	0%			100	0%			
Isolation fund	ction			Y	es			Ye	es			
Usage categ	ory			E	3		В					
	Mechani	cal life		150	000		15000					
Operation		AC380/400/415V		75	00		7500					
(times)	Electrical	AC500/550V		50	00			3500				
		AC660/690V		30	00			20	00			
Flashover di	stance (mi	m)		()		0					
				Acces	sory informati	on						
Operation di	rectly via h	andle		Sta	ndard		■ Standard					
Extended rotary handle					tional		Optional					
Motor mechanism				□ Op	tional				tional			
Fixed type front-panel				Sta	ndard			∎ Sta	ndard			
Plug-in type front-panel				□ Op	tional				tional			
Plug-in type	back-pane			□ Op	tional				tional			
Drawer type				□ Ор	tional				tional			
Phase partiti	on			∎ Sta	ndard			∎ Sta	ndard			

207

4 Release Mode and Accessory Code

Alarm contact ● Aux. contact ○
Shunt release ■ Undervoltage release ▲

Accessory name	Accessory	Accessory installation and wire leading mode					
	code	TeM7E-125/250	TeM7E-400/430				
		3P, 4P	3P, 4P				
No accessory	00						
Alarm contact	08						
Shunt release	10						
Undervoltage release	30						
Aux. contact	20						
Dual aux. contacts	21						
Three aux. contacts	22						
Four aux. contacts	23		81010				
Alarm contact + Shunt release	18						
Alarm contact + Undervoltage release	38						
Alarm contact + Aux. contact	28						
Alarm contact + Dual aux. contacts	68						
Alarm contact + Three aux. contacts	67						
Alarm contact + Four aux. contacts	66						
Shunt release + Aux. contact	40						
Shunt release + Dual aux. contacts	41						
Shunt release + Three aux. contacts	42						
Shunt release + Four aux. contacts	43						
Undervoltage release + Aux. contact	70						
Undervoltage release + Dual aux. contacts	71						
Undervoltage release + Three aux. contacts	72						
Undervoltage release + Four aux. contacts	73						
Alarm contact + Shunt release + Aux. contact	48						
Alarm contact + Shunt release + Dual aux. contact	47						
Alarm contact + Shunt release + Three aux. contact	46						
Alarm contact + Shunt release + Four aux. contact	45						
Alarm contact + Undervoltage release + Aux. contact	78						
Alarm contact + Undervoltage release + Dual aux. contact	77						
Alarm contact + Undervoltage release + Three aux. contact	76						
Alarm contact + Undervoltage release + Four aux. contact	75						

TeM7E Series Moulded Case Circuit Breaker

5 Trip Characteristic Curve

5.1 TeM7E electronic trip unit

209

TeM7E

5.2 TeM7E Energy Trip Curve

The TeM7E-125 ~ 630 circuit breaker has an energy trip system. This system is a self-contained system that can generate a high gas pressure in the event of a short-circuit fault to apply this pressure on a piston mechanism making the circuit breaker trip to break the extremely large short circuit current.

With the huge pressure, the system can be disconnected quickly and reliably to realize the full selective protection.

5.3 TeM7E Current Limiting Capacity

The current limiting capacity of the circuit breaker refers to that the circuit breaker has the short circuit current limiting capacity in the event of short circuit, and the permissible current that passes through is lower than the expected value of the short circuit current.

The TeM7E series has excellent current limiting capability as the dual rotary breaking technology is used (the contacts are quickly and naturally rejected, and the arc voltage is divided into two arc voltages connected in series with a steep wavefront). With excellent current limiting capability, the TeM7E series can greatly reduce the electrodynamic force generated by the fault current, thus greatly increasing the breaking capacity of the circuit breaker. Furthermore, the breaking capacity Ics of TeM7E is equal to the limit breaking capacity Icu.

ICS values are specified in GB/T 14048.2 standard, and are guaranteed through testing;

- After continuously breaking the fault current 3 times, breaking current = 100% Icu.
- Check whether the equipment meets the requirements of normal operation; that is:
- The protection function is enabled within the range specified in the standard
 - The isolation function is absolutely safe and is not affected.

Extend the life of electrical equipment

The current limiting technology used in the circuit breaker greatly reduces the damage to the equipment caused by the short-circuit current.

Heat effects

Reduce the temperature rise, and improve the service life of the cable.

Mechanical effects

The decreasing of electrodynamic force greatly reduces the risk of deformation or damage to the contact and busbar.

Electromagnetic effects

Greatly reduce the interference with accessory measuring devices

TeM7E Series Moulded Case Circuit Breaker

5.4 TeM7E Current Limiting Curve

5.5 TeM7E Thermal Stress Curve

6 Installation Safety Spacing and Minimum Distance of Circuit Breaker

6.1 Safety Spacing

Minimum spacing between two adjacent circuit breakers

Minimum spacing between the circuit breaker and the front or rear plate

Minimum spacing between the circuit breaker and the top, base, or side plate

Exposed or painted metal parts

Note: If F< 8mm: an insulating baffle must be used

Minimum safety distance of TeM7E-125 ~ 630

	î.									
	Spacing (mm)									
Operating voltage	Between circuit breakers	Between th pa	Ex	Exposed metal part						
	A1	C1	D1	D2	C1	D1	D2			
U ≤ 440V, used for the circuit breaker equipping with the following accessories:										
No accessory	0	0	30	30	5	40	40			
Phase partition	0	0	0	0	5	0	0			
440V < U ≤ 690V, used for the circuit breaker equipping with the following accessories:										
Phase partition	0	0	0	0	20	10	10			

D

Circuit breaker with phase partition or terminal cover

TeM7E Series Moulded Case Circuit Breaker

6.2 Relevant Spacing with Live Bare busbar

Minimum safety distance of TeM7E-125 ~ 630

Table 4

	Relevant spacing of live bare busbar								
Operating voltage	Spacing	≤ 60 mm	Spacing >60 mm						
	F1	F2	F1	F2					
U<440V	350	350	80	80					
U≤440V≤600V	350	350	120	120					
U>600 V	Prohibited: Insulating baffle between the circuit breaker and the busbar								

Only when the configuration scheme passes the test, the spacing of special installations can be reduced.

TeM7E

7 Outline and Installation Dimensions of Circuit Breaker

Install base plate

7.1 Outline and Installation Dimensions of TeM7E Fixed Type Front-Panel

TeM7E Series Moulded Case Circuit Breaker

		TeM7E-125/250 3P			TeM7E-400/630 3P				TeM7E-125~630 4P		
Install rail		$E^{2} \xrightarrow{P} \xrightarrow{F^{1}} \xrightarrow{F^{2}} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} $		F1-4 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2			X 4 Ø6	F3 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2			
N. I.I.								20	01	Table 5	
	A 91	A1	A3	B	5	1	31	82	C1	80.2	
TeM7E-125/250	127.5	255	237.5	52.	5	1	40	185	112	116.5	
Teimi 2-400/050	127.5	200	237.5	70			40	165	112	110.5	
Model	C3	E1	E2	E	3	l	Ξ4	F1	F2	F3	
TeM7E-125/250	126.7	62.5	125	70.	7	14	41.4	35	17.5	70	
TeM7E-400/630	172.5	100	200	113	.5	2	227	45	22.5	90	
Model	φΤ	U	H1	H2	J	1	J2	J3	K1	K2	
TeM7E-125/250	24	≤32	22.5	20.1	2	5	18	18	20	16.75	
TeM7E-400	24	≤32	25.3	26.4	33	.8	30	30.5	30.5	28.4	
TeM7E-630	24	≤32	27.3	26.4	33	.8	30	30.5	30.5	28.4	

7.2 Outline and Installation Dimensions of TeM7E plug-in type

Dimensions	3P	4P
	1 1 1	

dimensions of

base plate

Rear connection

3P

4P

ØT1 is used only for rear connection (for 3P2T circuit braker, the intermediate pole is not required)

TeM7E Series Moulded Case Circuit Breaker

Install rail

											Table 6
Model	А	A1	A5		B1	B2	2	C3	D1	E5	E6
TeM7E-125/250	81	162	172.5	52.5	105	140	0	126.7	67	94.5	189
TeM7E-400/630	127.5	255	237.5	70	140	18	5	172.5	111	149.5	299
Model	E7	E8	E9	E10) E	15	E	16	E17	E18	F1
TeM7E-125/250	86	172	73.5	147	7	37		74	61.8	123.6	35
TeM7E-400/630	137.5	275	125.5	251	1 7	1.5	1	43	100.5	201	45
									_		
Model	F2	F3	F4	F5	F6	F7	7	F8	F9	φT1	U
TeM7E-125/250	17.5	70	53	107	141	50)	85	25	22	≤32
TeM7E-400/630	22.5	90	68	136	181	90)	135	45	33	≤35

7.3 Outline and Installation Dimensions of TeM7E drawer type

Dimensions	3P	4P

Front connection (install the insulating baffle between the mounting base plate and the circuit breaker base)

TeM7E Series Moulded Case Circuit Breaker

Rear connection

(1) ØT1 is used only for rear connection

Install rail

E20. E20. E20. E19 2 Ø7 Y

										Table 7
Model	A11	B3	B4	B6	C3	D1	E9	E10	E11	E12
TeM7E-400/630	237.5	110	220	265	168	68.5	149.5	299	138	276
Model	E13	E14	E17	E18	E19	E20	F1	F2	F3	F7
TeM7E-400/630	125.5	251	100.5	201	71.5	143	45	22.5	90	90
Model	F8		F9	F10	F	11	F12	U		φT1
TeM7E-400/630	135		45	68.5	1:	37	182	≤35		33

Note: No drawer type is available for 250 (inclusive) and below

7.4 Outline and Installation Dimensions of TeM7E with motor mechanism

Plug-in type

Drawer type

Model	A14	A15	A16	A17	В	B1	B2	B8	B9	C4	C5	C9	D1
TeM7E-125/250	18.3	70.5	32.8	55.2	52.5	105	140	45	90	192.6	203.8	38	67
TeM7E-400/630	-	-	48.8	91.3	70	140	185	65	130	225	260	47	88

TeM7E Series Moulded Case Circuit Breaker

7.5 Outline and Dimensions of TeM7E with direct rotary handle

7.6 TeM7E with Extended Rotary Handle and Outline Dimensions

Drawer type circuit breaker

Rod length (mm): Standard 300 Customized by customer Table 10

	10.510 10
Model	R2
TeM7E-125/250	280
TeM7E-400/630	312

Rod length (mm): Standard 300 Customized by customer Table 11

Model	R2
TeM7E-400/630	353.5

Dimensions and hole on door

Model	A11	В5
TeM7E-125/250	118	15.3
TeM7E-400/630	19.6	18.2

TeM7E Series Moulded Case Circuit Breaker

7.7 Size of Hole before Panel for TeM7E Fixed Type and Plug-in Type

Model	P3
TeM7E-125/250	88
TeM7E-400/630	117

223

8 Controller Function Configuration Table

8.1 Power Distribution Protection

								Table 14	
		Knob basic type E2 E4			b + L nicatio E4	CD on type			
				3P	4P	3P		4P	
			Overload long delay protection	\checkmark			\checkmark		
			Short circuit short delay protection		V				
	Basic	protection	Short circuit instantaneous protection		V				
			MCR protection (enabled)		\checkmark		√		
Power distribution			Earth fault protection		0		\checkmark		
protection	م جاجانا، م	-1	Neutral line protection	×	0	×		\checkmark	
	Addition	al protection	Current three-phase unbalance protection		0		1		
			Overvoltage protection		×		\checkmark		
	Drotaction	willion function	Overload pre-warning		\checkmark		\checkmark		
	Protection a	uxiliary function	Thermal memory		×		√		
			Current ABCN per pole	×			√		
	Current n	neasurement	Earth current		×		√		
			Three-phase current unbalance		×		\checkmark		
Measurement function	Voltage measurement		Line voltage UAB\UBC\UCA line voltage unbalance		×		\checkmark		
			Phase voltage UAB\UBC\UCA phase voltage unbalance		×		\checkmark		
	Power m	neasurement	Active power, reactive power, apparent power, power factor		×		\checkmark		
			Historical max. and min. current		×		\checkmark		
Llister, records	Historical max. value/min. value (communication output)		Historical max. and min. voltage		×		\checkmark		
HISTOLY LECOLDS			Max. and min. values of power factor		×		\checkmark		
	Fault	memory	Latest 20 times	×			\checkmark		
		Fault information display	Type of the last fault, fault current, operation time		×		\checkmark		
	LCD display includes but not	Real-time current display	Same as current measurement information	×			\checkmark		
	limited those	Real-time voltage display	Same as voltage measurement information	×			\checkmark		
Display function		Real-time power display	Same as power measurement information	×			\checkmark		
		Run state	Green	√			\checkmark		
	LCD indicator	Pre-warning state	Yellow	1			\checkmark		
		Alarm state	Red		\checkmark		\checkmark		
Communication function	Body isolatio	n communication	MODBUS-RTU protocol		×		\checkmark		

1) $\sqrt{}$ Basic function \circ Optional function x No function;

2) Earthing protection: Difference type.

224

TeM7E Series Moulded Case Circuit Breaker

8.2 Motor Protection

						16 and	
		Release tyr		Knob k	basic	commur	nication type
		Function		type L	_1V12		EM4
	1			3P	4P	3P	4P
			Overload long delay protection	\checkmark			\checkmark
	Basic	protection	Instantaneous protection	\checkmark			\checkmark
	Dasic	protection	Motor shaft lock protection	\checkmark		\checkmark	
			MCR protection function	\checkmark			\checkmark
			Current three-phase unbalance protection / phase loss	0			\checkmark
			Startup timeout protection	0			\checkmark
Motor protection	A al aliti a a	-1	Low load protection	0			\checkmark
	Addition	al protection	Earth fault protection	0			\checkmark
			Neutral line protection	×	0	×	√
			Overvoltage protection	×			~
			Overload pre-warning	\checkmark		V	
	Protection a	uxiliary function	Thermal memory	×			\checkmark
			Current ABCN per pole	×			\checkmark
	Current n	neasurement	Earth current	×			\checkmark
Measurement			Three-phase current unbalance	×			\checkmark
function			Line voltage UAB\UBC\UCA line voltage unbalance	×			\checkmark
	Voltage n	neasurement	Phase voltage UAB\UBC\UCA phase voltage unbalance	×			\checkmark
	Power m	leasurement	Active power, reactive power, apparent power, power factor	×			\checkmark
			Historical max. and min. current	×			\checkmark
Llistor (records	Historical max. value/min. value (communication output)		Historical max. and min. voltage	×			\checkmark
HISTOLY LECOLDS			Max. and min. values of power factor	×			\checkmark
	Fault memory		Latest 20 times	×			\checkmark
		Fault information display	Type of the last fault, fault current, operation time	×			\checkmark
	LCD display	Real-time current display	Same as current measurement information	×			\checkmark
	limited those	Real-time voltage display	Same as voltage measurement information	×			\checkmark
Display function		Real-time power display	Same as power measurement information	×			\checkmark
		Run state	Green	√			\checkmark
	LCD indicator	Pre-warning state	Yellow	~			\checkmark
		Alarm state	Red	~			\checkmark
Communication function	Body isolation	n communication	MODBUS-RTU protocol	×			

1) $\sqrt{}$ Basic function $~\circ$ Optional function ~x No function;

2) Earthing protection: Difference type.

9 TeM7E Trip Unit

9.1 E type Electronic Trip Unit

The TeM7E provides a series of interchangeable electronic trip units. The E4 type electronic trip unit provides power parameter measurement and communication functions to manage power parameters and optimize usage of the power.

The G protection of the E2 type

electronic trip unit is optional

EM2/EM4

Motor protection

The G protection of the E2 type electronic trip unit is optional

9.1.1 Front side of trip unit

TeM7E Series Moulded Case Circuit Breaker

A: LED indicator B: Knob for presetting protection function C: LCD display D: Navigation keyboard E: Communication and test port F: USB programmer interface

G: Trip wiring port

9.1.2 Navigation keyboard

4-key keyboard is used to navigation

"C" key (Return key): Return to the previous menu in the unedited state; exit the edit state in the edit state.

"A" key (UP key): Change the interface upwards in the unedited state; add the current data in the edit state.

"▼" key (DOWN key): Change the interface downwards in the unedited state; minus the current data in the edit state.

"OK" key (Enter key): Enter the next menu or enter the edit state in the unedited state; save the current data and exit the edit state in the edit state.

9.2 Communication and Test Ports

9.2.1 Communication ports

It supports RS485 communication with isolation function, and can realize remote metering, remote control, and remote communication data transmission functions. With special motor mechanism, the remote control function can be realized, and the remote control output adopts optocoupler output. The communication adopts the Modbus-RTU protocol format.

Table 16

Communication protocols	Modbus
Communication address	1~ 255, 0 is the broadcast address
Baud rate (bit/S)	2.4k, 4.8k, 9.6k, 19.2k, 38.4k, 57.6k, 76.8k, 115.2k

The E series trip units have test ports dedicated for maintenance operations.

The test port can be used to connect a handheld programmer to perform many operations of the E series trip unit such as local test, fault query, parameter setting, and power parameter calibration.

9.2.2 Communication port of circuit breaker

9.2.2.1 Communication port

Communication and test port diagram

		Table 17
Terminal	Function	
1	Programmer communication	
2	For internal use	
3	Programmer communication	
4	For internal use	
5	External connection DC24V (+)	
6	Programmer input +5V	
7	Breaking contact	
8	External connection DC24V (-)	
9	Closed contact	
10	RS485B	
11	Breaking closed common terminal	
12	RS485A	

9.2.2.2 Trip wiring port

Trip wiring port diagram

Trip alarm terminal

	Table 18
Terminal	Function
1	Switch State input + (Dry contact)
2	Switch status input - (Dry contact)
3	Trip +
4	Trip -

9.2.2.3 USB programmer communication port

USB programmer communication port diagram

Communication terminal function

	Table 19
Terminal	Function
1	+5V
2	TXD
3	RXD
4	Empty
5	GND

TeM7E

Communication and test port

TeM7E Series Moulded Case Circuit Breaker

9.2.2.4 Special communication line

The standard length of the special is 0.5m, and the length can be customized.

Note: The communication type circuit breaker should be connected to an external DC24V power supply, and check the polarity, otherwise the communication cannot be available. No short circuit is allowed between the terminals, otherwise it will cause damage.

Body port (for circuit breaker connection)

9.2.3 Connection between the communication interface and the motor mechanism

9.2.4 Circuit breaker communication interface

When the E series trip unit is powered by an external DC24V power supply, the backlight of the trip unit display is white, and the backlight: will lights up for 1 minute when one key on the keyboard is pressed or the DC24V power supply works.

9.2.5 Power supply for E series trip units

External DC 24V power supply

The DC24V power supply maintains the functions of the E series trip units in all conditions, including low load conditions (load less than 20%).

10 Example of Using a Knob to Set the Protection Function

Long delay protection current, short delay protection current, and earthing protection current shall be set via knob; the key can be used to fine-tune the current intelligently.

The keys are used for fine-tuning of the current step of 1A from the maximum value defined by the knob setting to the adjacent lower current gear. For example, for In = 250A product, the knob setting value is 200A, the key can realize the fine-tuning of the range of 180-200A; when the knob is set to the minimum gear or OFF gear, no adjustment is available.

Step	Operation	Usage	Display
1	Turn the Ir knob to 250	$150 180 \\ 140 125 100 120 \\ 100 100 250 \\ k (A)$	Protect->Long Time Ir = 250A
2	If the set value of the current is inappropriate, set the exact value of Ir on the key: press the OK key, and then press the Down key.		Protect->Long Time Ir = 245 A
3	Confirm the setting.	OK	Protect->Long Time Ir = 245A

TeM7E Series Moulded Case Circuit Breaker

10.1 Example of Setting Protection Function Via Key

			Table 21
Step	Operation	Usage	Display
1	Boost screen		TENGEN
2	Enter the default interface after a delay, and press the "Up" or "Down" key to switch to the measurement information	00	Ia:0A Ib:0A Ic:0A
3	Press the "OK" key on the default menu to enter main menu, and press the "Up" or "Down" key to switch the contents		Menu ► Protect Trip Info.
4	Press the "OK" key on main menu to enter the overload long delay setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Long Time Ir = 245A
5	Press the "DOWN" key to enter the overload long delay setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->long Time tr = OFF
6	Press the "DOWN" key to enter the overload long delay thermal memory setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->long Time Thermal OFF
7	Press the "DOWN" key to enter the short circuit short delay setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Short Time Isd = 6.0Ir
8	Press the "DOWN" key to enter the short circuit short delay time setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Short Time tsd = 0.30s Fixed
9	Press the "DOWN" key to enter the short circuit short delay thermal memory setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Short Time Thermal OFF

Table 21, continued

Step	Operation	Usage	Display
10	Press the "DOWN" key to enter the short circuit instantaneous setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Instantaneo li = 10Ir
11	Press the "DOWN" key to enter the earthing protection setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Ground Ig = 0.2In
12	Press the "DOWN" key to enter the earthing protection time setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Ground tg = 0.4s@6lg
13	Press the "DOWN" key to enter the pre- warning setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Pre-alarm lp = 0.90lr
14	Press the "DOWN" key to enter the neutral line protection setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Neutral Netral = 100%
15	Press the "DOWN" key to enter the current unbalance protection setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Imbalance Iunbal = 30%
16	Press the "DOWN" key to enter the current unbalance time setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->Imbalance tunbal = 4s
17	Press the "DOWN" key to enter the overvoltage protection setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->0verVoltage Uover = 480V
18	Press the "DOWN" key to enter the overvoltage time setting, press the "UP" key to return to the previous menu, and press the "C" key to return to main menu		Protect->0verVoltage tover = 1.0s

232

TeM7E Series Moulded Case Circuit Breaker

10.2 Keys used to view/set history records, communication parameters, and clock settings

			Table 22
Step	Operation	Usage	Display
1	Press the "DOWN" key on main menu to select the history records	•	Menu Protect ► TripInfo.
2	Press the "OK" key on main menu to enter the history records, and press the "DOWN" key to view the fault type and time		TripInfo>Short 00 19-09-09 19:44:32
3	Press the "C" key to return to main menu, and press the "DOWN" key to select the communication parameters	C	Menu ► COMM. CLOCK
4	Press the "OK" key on main menu to enter the communication parameters option, and press the "UP" or "DOWN" key to view and modify the communication address and baud rate		COMM>Address Address = 3
5	Press the "C" key to return to main menu, and press the "DOWN" key to select the clock setting		Menu COMM. ► CLOCK
6	Press the "OK" key on main menu to enter the clock setting option, and press the "UP" or "DOWN" key to set the clock		CLOCK->Year 24-07-03 14:27:46

23

10.3 Protection Functions of Circuit Breaker

Overload long delay + Short circuit short delay + Short circuit instantaneous + Prewarning/Neutral line protection/Earthing fault protection/Three-phase unbalance

EM2

Overload long delay + Jam + Short circuit instantaneous + Pre-warning/Neutral line protection/Earthing fault protection/Threephase unbalance/Low load/Long start

LCD display, multi-gear setting protection via knob, with all the functions of the E2 series and the voltage, current, power measurement functions, communicable

EM4

LCD display, multi-gear setting protection via knob, with all the functions of the EM2 series and the voltage, current, power measurement functions, communicable

11 Power Distribution System Protection

11.1 E type Trip Unit

The E type trip unit can be used in the 125~630A circuit breakers with breaking level L/M/H/S, and there are knob type and LCD type controllers. The basic LSI three-stage protection or LSI + earth fault protection G are provided. Measurement, alarm and communication functions are available.

11.2 Protection Type

The protection value can be set in two ways – coarse tuning via knob 🕢 and fine-turning via keys 🕶 🗗 . Among them, keys are used for fine-tuning in steps of 0.05~1 from the maximum value defined by the knob setting.

Overload protection: Long delay protection (Ir)

The overload protection has the inverse time limit characteristics with a knob used to adjust the overload protection current lr, and the keys are also used for fine-tuning. At the same time, keys are used to adjust the overload protection delay time tr.

Short circuit short delay protection: (Isd)

By adjusting the short circuit short delay protection current lsd and the delay time tsd, realize the short circuit short delay protection.

Short circuit instantaneous protection: (li)

The short circuit instantaneous protection current li can be adjustable.

Earth fault protection (Lg)

The earth fault protection current Lg is adjustable (and can be disable), and the delay time tg is also adjustable.

Neutral line protection (Irn)

• 4-pole circuit breaker, with keys used to set this protection:

Off: No protection for the neutral line.

 \circ 0.5: Neutral line semi-protection; the protection value is half of the protection current of each phase - 0.5xIr.

o 1.0: Neutral line full-protection; the protection value is equal to the protection current of each phase - 1.0xIr.

Current unbalance protection (lunbal)

The current unbalance protection lunbal is adjustable (and can be disable) and the delay time tunbal is also adjustable.

Overvoltage protection (UOV)

The overvoltage protection Uov is adjustable (and can be disable), and the delay time tov is also adjustable.

MCR protection

MCR protection provides a high-speed instantaneous protection for the circuit breaker itself; when an out-of-limit fault current occurs, the controller will issue a trip command within a very short time.

The fixed value of the MCR protection current is 18In, and the maximum breaking time is ≤ 30ms.

Plug-in type electrical interlock protection

In plug-in type product installations, the insert in the mounting base is used to trigger this button for forced opening operation. Note: The normal operation can be guaranteed when the single-phase power supply current is 0.4In and the three-phase power supply current is 0.2In or more.

11.3 Fault Type Display

After tripping due to fault, view the fault type and the relevant fault phase and corresponding fault information by querying the history records. The controller shall be powered by an external power supply.

11.1.3 Indicators

- Green: LED indicator for normal operation; the circuit breaker is in protection-ready state; it is not lit when I<20%In; when I>20%In, the LED will flicker slowly (1s).
- Yellow: Pre-alarm LED indicator; when I>110% lp, the indicator will always on; when I<90% lp, the indicator does not light up.
- Red: Alarm LED indicator; when I>105%Ir, it will flicker for the first half of the specified trip time and will be always on for the second half of the time.

11.4 Protection Characteristic

Table 23

Protection	E trip unit					
Rated current (A)	In 40°C ⁽¹⁾	125	250	400	630	
Circuit breaker	TeM7E-125	-	-	-	-	
	TeM7E-250	-	-	-	-	
	TeM7E-400	-	-		-	
	TeM7E-630	-	-	-	-	

Table 24

L	Long delay pro	otection									
Trip current set value (A)	Rated current of tr	ip unit (In)	Set valu	ie on knob	, Ir						
Ir = Knob set value											
	In=125A	50	56	63	70	75	80	90	100	112	125
	In=250A	100	112	125	140	150	160	180	200	225	250
	In=400A	160	180	200	225	250	280	315	350	375	400
	In=630A	250	280	315	350	375	400	450	500	560	630
	Key set value		With	the knob s	set value a	s the maxi	mum value	, fine tune	it in steps	of 1A	
Delay time (s) tr=	Key set value				1	2	4	8	16	0	FF
Accuracy ±10 %		1.5	x Ir		16	32	64	128	256		
		3 x	: Ir		4	8	16	32	64		
		6 x	Ir		1	2	4	8	16		
Thermal memory					30 m	inutes befo	ore and after	er trip			

TeM7E

236

TeM7E Series Moulded Case Circuit Breaker

S	Short circuit	hort delay protection										
Trip current set value (A) Accuracy ±10 %	lsd = lr x	Knob set value	Knob set value 1.5 2 3 4 5 6 7 8 9 10									10
		Key set value, with fine-tuning in steps of 0.5 x Ir										
Delay (s)	tsd =	Knob set value	Definite ti	me limit	0.	05	0.1	0.2	0.3		OFF	
Accuracy ±10 %			Inverse ti	me limit	0.	05	0.1	0.2	0.3		OFF	

Table 26

Table 27

Table 25

I.	Instantaneou	Instantaneous protection										
Trip current set value (A) Accuracy ±15 %	li = lr x	Key set value	2	3	4	5	6	8	10	12	14	OFF
		Key set value, with fine-tuning i						steps of	0.5 x lr			
	Max. breaking time		50 ms									

Earth fault protection lg = ln x Knob set value 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 OFF Trip current set value (A) Accuracy ±10 % Key set value, with fine-tuning in steps of 0.05In Delay (s) tg = ... Knob set value Definite time limit 0.1 0.2 0.3 0.4 0.2 Inverse time limit 0.1 0.3 0.4

Table 28

Irn	Neutral line	e protection						
Trip currer	nt set value (A)	Irn = Ir x	Knob set value	0.5	1	OFF		
50% half-	-protection of n	eutral line	In the event of the overload fault of the neutral phase, the protection action point is equal to half of the set v In the event of the short circuit short delay fault of the neutral phase, the protection action point is equal to h of the set value. In the event of the short circuit instantaneous fault of the neutral phase, the protection action point is equal t set value.					
100% full	I-protection of r	neutral line	In the event of the overlo In the event of the short set value. In the event of the short set value.	bad fault of the neutral phase, the protection circuit short delay fault of the neutral phas circuit instantaneous fault of the neutral ph	on actio e, the nase, tl	on point is equal to the set value. protection action point is equal to the he protection action point is equal to the		

Table 29

lunbal	Current unbala	ce protection						
Trip current set value (A) Accuracy ±10 %		lunbal =	Knob set value	10% 15% 20% 25% 30% 35% 40% 50% 60% Off				
				Key set value, with fine-tuning in steps of 1%				
Delay (s) tunbal =			Knob set value	Le During normal operation: 1~40.0s During startup of product: 0.7s				
Accuracy ±10 %				Key set value, with fine-tuning in steps of 1s				

Table 30

Uov	Overvoltage pr	protection						
Trip voltage set value (A)		Uov=	Key set value	Four-pole: 240~480, OFF Three-pole: 420~800, OFF				
Accuracy ±1 %	Accuracy ±1 %		Key set value, with fine-tuning in steps of 1V					
Delay (s)	Delay (s)		Key set value	0.2~60s				
Accuracy ±10 %			Key set value, with fine-tuning in steps of 0.1s					

(1) If the product works in a high-temperature environment, to determine the set value, the temperature derating must be considered. For more information, please refer to the temperature derating table.

12 Multi-Parameter Electric Energy Measurement

12.1 E type Intelligent Trip Unit

In addition to protection functions, the E type trip unit provides powerful functions such as multi-functional power parameter measurement and operation management.

Display settings
 Measurement function

Historical data log with time display

AlarmCommunications

With the intelligent and precise instrument transformer of the E type intelligent trip unit, the E type trip unit can realize the measurement functions. They all processed by the built-in microprocessor.

12.2 LCD Display

The user can view all protection settings and the measurements of main power parameters on the LCD screen of the trip unit. • The E type intelligent trip unit can measure the followings: instantaneous true current RMS value, voltage, and power.

In order to ensure that the LCD display can work under all operating conditions, it is recommended to provide an external power supply. The external power supply must be used in the following situations:

- Reliable display of fault and fault current values
- Use all the functions of all E type intelligent trip units (such as: measurement at low loads).
- Ensure the reliable operation of the communication system

12.3 Parameter Measurement

True RMS value measurements

- The E type intelligent trip unit can continuously display the true RMS current values for the three-phase and neutral lines. In the event of a fault trip, the fault current is stored.
- The E type intelligent trip unit can measure phase current, neutral line current, and earth fault current.
- The E type intelligent trip unit can also provide voltage and power measurement.

Max/Min value measurements

For E type intelligent trip unit, each instantaneous measured value can be cumulative for calculation of the maximum and minimum values. The maximum values of three-phase and neutral line current, demand current, and power can be reset by the communication system.

12.4 Power parameter measurement function of E type intelligent trip unit integration

		Table 31
Measured value		
True RMS measured current (A)		
Current (A)	Phase current and neutral line current	la, lb, lc, ln
	Earth current	lg
	Interphase unbalance current	Ba, Bb, Bc
Voltage	Line voltage	U_{AB}, U_{BC}, U_{CA}
	Phase voltage	U _{an} , U _{bn} , U _{cn}
	Unbalanced line voltage, unbalanced phase voltage	BUab,BUac,BUbc BUan,BUbn,BUcn
Power	Active (kW)	Pt, three-phase / phase
	Reactive (kVAR)	Qt, three-phase / phase
	Apparent (kVA)	St, three-phase / phase
	Power factor	PF , three-phase and each phase

TeM7E Series Moulded Case Circuit Breaker

Other technical characteristics - measurement accuracy

These accessories are available for the entire system - including transformer.

- Current: ±1% (up to±0.5%)
- Voltage: ±0.5%
- Power: ±1.5% (up to ±1%)

13 Power Management for E type Intelligent Trip Unit

13.1 Personalized alarm with time display

Alarm type

- LCD window display
- · Alarm current display
- Alarm time display

13.2 History Logs and Event Tables

The history logs and events tables are always in the recordable state

Three types of history logs with time display

• Trip caused by LR, LSD, LI, LG out of the threshold: the last 20 trips

Each history log is recorded

- Trip cause (including fault type, fault phase)
- Trip threshold
- Delay time

Current or voltage value (not available for some fault types, such as mcr trip) Failure time (year, month, day, hour, minute, second)

Display a history logs and events table

Through the communication system, the time-based history log and event table can be displayed on a single PC.

Built-in memory

With a nonvolatile built-in memory, the setting data, fault records, and history logs can be saved, and all recorded data can also be saved in the event of a power failure.

Manage installed devices

Each circuit breaker equipping with an E type intelligent trip unit can be identified by a communication system.

Serial number
 Firmware version
 Hardware version
 User-assigned device name

This information combining with the above-mentioned instructions clearly describes the status of the installed equipment.

14 Motor Protection

14.1 EM type electronic trip unit

The EM type trip unit provides the same protection functions as the E type trip unit:

Short circuit
 Overload

In addition, it can provide motor-specific protection functions that can be set via keys.

TeM7E

Protection

The protection value can be set in two ways – coarse tuning via knob 🕢 and fine-turning via keys 🕶 . Among them, keys are used for fine-tuning in steps of 1A from the maximum value defined by the knob setting.

The jam, low load, long-start protection and long delay trip class are added for motor protection, and other protections are the same as those of the power distribution controller.

Jam (I_{iam})

This function detection is locked by the motor shaft due to load. This function is disabled during the startup of the motor. During normal operation, trip will occur in the following situations:

• Fine tune within the 1-8 x Ir if higher than the threshold I_{iam}

• Delay time T_{iam} is adjustable: 1-30 seconds

Low load (I_{und})

This function can be used to detect the no-load operation of the motor due to insufficient loads (such as drain pumps) and can also detect low phase currents. During the startup of the motor, this function is always available. During the normal operation, it will trip in the following situations:

- Fine turn within the range of 0.3-0.9 x Ir if below the threshold Iundo
- Delay time Tund is adjustable: 1-200 seconds

Long start (I_{long})

This protection function can perfect the thermal protection (rating). Provide a better protection during the startup of the motor. Detect the abnormal startup of motor; that is, it will trip if the starting current is always too high or too low relative to the protection threshold and delay time in the following situations:

•For threshold I_{long} related, the fine-tuning range is 1-8 x Ir

•For delay time Tlong related, the adjustment range is 1-200 seconds

Trip Class (Class)

Five trip classes: 5, 10A, 10, 20, 30; they can be disabled

Other Technical Features

The start-up time depends on the trip class

In order to start the motor normally, the EM trip unit shall check the relevant conditions according to the thermal protection (long delay) trip current Ir.

• Current > 10% x Ir (motor cut-off limit)

• When exceeding 1.5 x Ir threshold, return to the value below this threshold before the end of the 10s delay.

If any of these conditions is not met, the thermal protection function will be enabled to trip the switch after a maximum time equal to the time corresponding to the selected trip class. The threshold Ir must be set to the current indicated on the nameplate of motor.

Long Startup

When this function is enabled, additional thermal protection (rating) is provided.

- Trip will occur during long start-ups, which is characterized as follows:
- Current > 10% x Ir (motor cut-off limit), and:
- Failed to return to the value below this threshold before the end of the long delay (1-200s) when the current exceeds the long delay threshold (1-8 x Ir).
- Or, failed to exceed the long delay threshold (1-8 x Ir) before the end of the long delay (1-200s).

The threshold Ir must be set to the current indicated on the nameplate of motor, and this protection should be coordinated with the selected trip class.

TeM7E Series Moulded Case Circuit Breaker

14.2 EM Type Protection Characteristics

L	Overload protection: Long delay protection										
Trip current set value (A)	Rated current of	[:] trip unit (I	n) Set va	alue on kn	ob, Ir						
Knob set value											
	In=125A	50	56	63	70	75	80	90	100	112	125
	In=250A	100	112	125	140	150	160	180	200	225	250
	In=400A	160	180	200	225	250	280	315	350	375	400
	In=630A	250	280	315	350	375	400	450	500	560	630
	Key setting		With	the knob s	et value a	s the max	imum valu	ue, fine tur	n in steps	of 1A	
Trip class I				5	10A	10	20	30			
Delay time (s)	tr	1.5 x lr		64	96	160	320	480			
Based on the selected trin class		2 x Ir		36	54	90	180	270			
		7.2x lr		2.7	4.2	6.9	13.8	20.8			
Thermal memory					30 mi	nutes befo	ore and af	ter trip			
l _{jam}	Jam										
Set value (A) Accuracy ±10 %	I _{jam} = Ir x	1-8lr, w	ith OFF st	ate, defau	It setting = durin	= OFF, fine g the start	e tune via up of the	key in ster motor	os 0.1 x Ir,	which is c	lisabled
Delay time (s)	T _{jam} =			Fine tu	une via ke	1-3 y in steps	30s 1s; defaul	t set value	e = 30s		
l _{und}	Low load (lov	v current)								
Set value (A) Accuracy ±10 %	I _{und} = Ir x	0.3-0.9lr,	, with OFF	state, def	ault settin is er	g = OFF, f nabled dur	ine tune th ing the sta	ne motor v artup	ia key in s	teps Ir x 0	.1, which
Delay time (s)	T _{und} =	1-200s Fine tune via key in steps 1s; default set value = 10s									
l _{long}	Long start										
Set value (A) Accuracy ±10 %	I _{long} = Ir x	1-8Ir, with OFF state, default setting = OFF, fine tune the motor via key in steps Ir x 0.1, which is enabled during the startup of the motor									
Delay time (s)	T _{long} =			Fine tu	une via ke	1-2 y in steps	00s 1s; defaul	t set value	e = 10s		

15 Accessories

15.1 Internal Accessories

15.1.1 Aux. contact AX

[Function]

Accessories that remotely indicate the CLOSED (ON) or OPEN/FREE TRIP (OFF) state of the circuit breaker and are connected to the auxiliary circuit of the circuit breaker.

[Indicate the ON/OFF state of circuit breaker]

When the circuit breaker is in the "OFF"	F12 F11
and "FREE TRIP" position	F14 F11
When the circuit breaker is in the "ON" position	F12 F11 F14 F11

[Electrical Characteristics]

Detect exercting voltage ()()	Rated operating current (A)						
Rated operating voltage (v)	AC-15	DC-13					
AC 110	4	-					
AC 220/240	3	-					
AC 415	2.5	-					
DC 110	-	0.3					
DC 220	_	0.25					

[Wiring diagram]

15.1.2 Alarm contact AL

[Function]

It is mainly used to provide signals in the event of the overload, short circuit or undervoltage fault or free trip of the circuit breaker.

TeM7E Series Moulded Case Circuit Breaker

[Indicate the ON/OFF state of circuit breaker]

When the circuit breaker is in the "OFF" and "ON" position	B12 B11 B14 B11
When the circuit breaker is in the "FREE TRIP (ALARM)" position	B12 B11 B14 B11

[Electrical Characteristics]

		Table 36
Reted operating voltage ()()	Rated operati	ing current (A)
Rated operating voltage (v)	AC-15	DC-13
AC 110	4	-
AC 220/240	3	-
AC 415	2.5	-
DC 110	-	0.3
DC 220	-	0.25

[Wiring diagram]

15.1.3 Shunt release SHT

[Function] The shunt release works according to the electrical signal to realize the remote control and automatic control of the circuit breaker. When the power voltage is equal to any voltage between 70%~110% of the rated control power voltage, the shunt release can make the circuit breaker works reliably.

[Electrical Characteristics]

Frama	Power Consumption (W)								
Frame	AC220-240V	AC380-415V	DC24V	DC110V	DC220V				
125/250/400/630A	2.2	2.5	2.2	2.5	2.5				

[Operating Characteristics]

It is prohibited to energize the product for long time (\leq 5s); response time: pulse type \geq 20ms, \leq 60ms.

Table 35

[Wiring diagram]

Note: When the shunt release with a rated control power voltage of DC24V is used, the maximum length of copper wire (the length of each of two wires) must comply with the table below:

Table 38

Sectional area of wire Rated control power voltage $U_s(DC24V)$	1.5mm²	2.5mm²
100%U _s	150m	250m
85%U _s	100m	160m

15.1.4 Undervoltage release UVT

[Function]

Realize the undervoltage protection function of circuit breaker to disconnect the circuit breaker when the power supply voltage is too low for the protection of the electrical equipment.

- When the supply voltage drops (or even slowly decreases) to the range of 70% to 35% of the
 rated control power voltage, the undervoltage release shall work to disconnect the circuit breaker
 reliably.
- When the power supply voltage is equal to or greater than 85% of the rated control power supply voltage of the undervoltage release, it is guaranteed that the circuit breaker is closed.
- When the supply voltage is less than 35% of the rated control power supply voltage of the undervoltage release, the undervoltage release shall work to prevent the circuit breaker from closing.

[Electrical Characteristics]

Table 39

Frama	Power Consumption (W)					
гаше	AC220-240V	AC380-415V				
125/250/400/630A	2.2	3				

[Wiring diagram]

TeM7E Series Moulded Case Circuit Breaker

15.2 External Accessories

15.2.1 Motor mechanism CD2

[Function]

[Electrical Characteristics & Wiring Diagram]

P1 and P2 are external power inputs SB1 and SB2 are operating buttons (provided by the user)

15.2.2 Direct rotary handle (AH)

Protection grade: IP40

[Function] With reliable insulation Suitable for isolation functions Realize the free trip of the circuit breaker Three position indicators: ON/OFF/TRIP Not affect the operation of the release and "Trip" test button by the user

[Lock]

Users can choose to hang padlock in the ON or OFF position (self-provided, diameter 5~8mm)

- 1~3 padlocks are allowed in each position
- Or the handle lock accessory is used to lock it in the ON or OFF position

15.2.3 Extended rotary handle (RH)

Protection grade: IP56

With extended rotary handle provided, the circuit breaker installed in the switch cabinet can be operated from the door of the switch cabinet, and the following functions can still be guaranteed:

[Function]

- With reliable insulation
- Suitable for isolation function
- Realize the free trip of the circuit breaker
- Three position indicators: ON/OFF/TRIP
- When the cabinet door opens, it does not affect the operation of the release and "Trip" test button by the user and it can ensure that the circuit breaker will not be closed.

ш

[Lock]

- Users can choose to hang padlock in ON or OFF positions (self-provided, diameter 5~8mm)
- 1~3 padlocks can be provided in each position
- After hanging a padlock, it can prevent the cabinet door from opening
- Or the handle lock accessory is used to lock it in the ON or OFF position

15.2.4 Plug-in type base (PIA)

- Realize the quick replacement of the circuit breaker without changing the inlet and outlet lines and mounting base
- The plug-in type base can be pre-installed to ensure convenient installation of the circuit breaker by the customer in the future
- It can be used to isolate the power supply circuit during the installation of the circuit breaker through-plate or base
- With a plug-in type safety device, it can ensure that the circuit breaker can trip automatically when the circuit breaker is pulled out in the ON state

15.2.5 Drawer type base (DOB)

[Function]

- Realize the quick replacement of the circuit breaker without changing the inlet and outlet lines and mounting base
- The drawer type base can be pre-installed to ensure convenient installation of the circuit breaker by the customer in the future
- With a safety device provided, it can ensure that the circuit breaker can trip automatically when the circuit breaker is pulled out in the ON state

Circuit breaker with a combined drawer type base has the two following states:

- Connection state: The power circuit is turned on
- Removable state: The circuit breaker can be taken out from the base

15.2.6 Phase partition

[Function]

It is used to ensure the safety of interphase insulation and prevent interphase short circuit.

TeM7E Series Moulded Case Circuit Breaker

16 Appendix

16.1 Circuit Breaker Inverse Time Limit Characteristic Table

Name of test current	Setting current Appointed time		ted time	Start state	Usage	Electromagnetic release		
Name of test current	multiple	In≤63A	In>63A	Start State	category	operating current (A)		
Conventional no-trip current	1.05In	≥1h	≥2h	Cold state	For power	401 - 0007		
Conventional trip current	1.30In	≥1h	<2h	Hot state	protection	10In±20%		
Conventional no-trip current	1.0In	≥2h <2h		≥2h		Cold state	For motor	101-000/
Conventional trip current	1.2In			Hot state	protection	12111±20%		

16.2 Circuit Breaker Trip Characteristic Curve

When the ambient air temperature changes, the trip characteristic has a little change and shall be corrected. The correction coefficient of the thermal magnetic release is as follows:

Ambient air temp.	-40°C	-35°C	-30°C	-25°C	-20°C	-15°C	-10°C	-5°C	0°C	5°C	10°C	15°C
Temp. correction factor	1.4	1.375	1.35	1.325	1.3	1.275	1.25	1.225	1.2	1.175	1.15	1.125
Ambient air temp.	20°C	25°C	30°C	35°C	40°C	45°C	50°	55°C	60°C	65°C	70	°C
Temp. correction factor	1.1	1.075	1.05	1.025	1.0	0.925	0.85	0.775	0.7	0.625	0.	55

16.3 Circuit Breaker Derating

High altitude derating

If the altitude exceeds 2000m in the applicable working environment, the electrical performance of the circuit breaker can be corrected according to the table below

Altitude (m)	2000	3000	4000	5000
Power frequency withstand voltage (V)	3000	2500	2000	1800
Operating current correction factor	1	0.94	0.88	0.83

1

0.83

0.71

16.4 Install circuit breaker

Connection with main circuit

Short circuit breaking capacity correction factor

Wiring connection must be carried out by professionally and technically qualified personnel.

The wiring connection can be performed only after confirming that the input power supply is completely disconnected Select the connecting wire.

The cross-sectional area of the connecting wire and the corresponding rated current are listed in the table below:

Rated current (A)	16 20	25	32	40 50	63	80	100	125 140	160	180 200 225	250	315 350	400
Sectional area of wire (mm ²)	2.5	4	6	10	16	25	35	50	70	95	120	185	240

Table 43

TeM7E

Table 42

0.63

				Table 44		
Deted surrent (A)		Cable	Copper busbar			
Raled current (A)	Qty.	Sectional area (mm ²)	Qty.	Size mm x mm		
500	2	150	2	30×5		
630	2	185	2	40×5		

For back-panel wiring connection, the insulating sleeve must be assembled onto the terminal block.

- Connect the crimped wire with the conductive electrode of the circuit breaker with bolt and tighten it.
- Install arc isolating sheet between the phases of the circuit breaker.

Check

Check the circuit breaker according to the installation requirements before use, and ensure that its fixed connection part shall be connected reliably; operate the circuit breaker repeatedly several times and check whether the operating mechanism works flexibly and reliably.

16.5 Use and Maintenance of Circuit Breaker

- When selecting the circuit breaker, ensure that the technical parameters indicated on the circuit breaker should be consistent with the actual requirements.
- The various characteristics and accessories of the circuit breaker are set by the manufacturer, and they cannot be adjusted at will during operation.
- With periodic inspection, remove dust on the surface of the shell, and keep the circuit breaker clean and good insulation.
- Select the different rated currents according to the requirements of the protected object, otherwise the correct protection effect cannot be achieved.
- A Maintenance and inspection must be carried out by professional and technical personnel.
- When the user chooses the internal and external accessories, their models provided by the company must be available to ensure the quality, and the company will not bear any consequences caused by purchase or modification without permission.
- Before performing maintenance operations, please make the circuit breaker open.
- Protect the circuit breaker to prevent rain attacks or drops during the operation, storage and transportation.

16.6 Application and Ordering Specifications

- The model and specification of the circuit breaker should be indicated. To order a 250 frame 3-pole product, current specification 250A, power distribution, breaking capacity of 50kA/AC415V, with shunt, circuit breaker product with a shunt voltage AC230V, the model is described as TeM7E-250L/3310 250A 230V;
- The rated voltage should be indicated for shunt and undervoltage accessories, such as AC230V;
- The rated operating voltage of the motor mechanism should be indicated, such as AC230V.